## Federal Aviation Administration, DOT - (3) The wing flaps in the takeoff position(s); and - (4) A climb speed as specified in $\S23.65(a)(4)$ . [Doc. No. 27807, 61 FR 5186, Feb. 9, 1996] ## § 23.66 Takeoff climb: One-engine inoperative. For normal, utility, and acrobatic category reciprocating engine-powered airplanes of more than 6,000 pounds maximum weight, and turbine engine-powered airplanes in the normal, utility, and acrobatic category, the steady gradient of climb or descent must be determined at each weight, altitude, and ambient temperature within the operational limits established by the applicant with— - (a) The critical engine inoperative and its propeller in the position it rapidly and automatically assumes; - (b) The remaining engine(s) at takeoff power; - (c) The landing gear extended, except that if the landing gear can be retracted in not more than seven seconds, the test may be conducted with the gear retracted; - (d) The wing flaps in the takeoff posi- - (e) The wings level; and - (f) A climb speed equal to that achieved at 50 feet in the demonstration of $\S23.53$ . [Doc. No. 27807, 61 FR 5186, Feb. 9, 1996] ## §23.67 Climb: One engine inoperative. - (a) For normal, utility, and acrobatic category reciprocating engine-powered airplanes of 6,000 pounds or less maximum weight, the following apply: - (1) Except for those airplanes that meet the requirements prescribed in $\S23.562(d)$ , each airplane with a $V_{SO}$ of more than 61 knots must be able to maintain a steady climb gradient of at least 1.5 percent at a pressure altitude of 5,000 feet with the— - (i) Critical engine inoperative and its propeller in the minimum drag position: - (ii) Remaining engine(s) at not more than maximum continuous power; - (iii) Landing gear retracted; - (iv) Wing flaps retracted; and - (v) Climb speed not less than 1.2 $V_{S1}$ . - (2) For each airplane that meets the requirements prescribed in $\S 23.562(d)$ , or that has a $V_{SO}$ of 61 knots or less, the steady gradient of climb or descent at a pressure altitude of 5,000 feet must be determined with the— - (i) Critical engine inoperative and its propeller in the minimum drag position; - (ii) Remaining engine(s) at not more than maximum continuous power; - (iii) Landing gear retracted; - (iv) Wing flaps retracted; and - (v) Climb speed not less than 1.2V<sub>S1</sub>. - (b) For normal, utility, and acrobatic category reciprocating engine-powered airplanes of more than 6,000 pounds maximum weight, and turbine engine-powered airplanes in the normal, utility, and acrobatic category— - (1) The steady gradient of climb at an altitude of 400 feet above the takeoff must be measurably positive with the— - (i) Critical engine inoperative and its propeller in the minimum drag position; - (ii) Remaining engine(s) at takeoff power; - (iii) Landing gear retracted; - (iv) Wing flaps in the takeoff position(s); and - (v) Climb speed equal to that achieved at 50 feet in the demonstration of §23.53. - (2) The steady gradient of climb must not be less than 0.75 percent at an altitude of 1,500 feet above the takeoff surface, or landing surface, as appropriate, with the— - (i) Critical engine inoperative and its propeller in the minimum drag position; - $(ii) \ Remaining \ engine(s) \ at \ not \ more \\ than \ maximum \ continuous \ power;$ - (iii) Landing gear retracted; - (iv) Wing flaps retracted; and - (v) Climb speed not less than 1.2 $V_{S1}$ . - (c) For commuter category airplanes, the following apply: - (1) Takeoff; landing gear extended. The steady gradient of climb at the altitude of the takeoff surface must be measurably positive for two-engine airplanes, not less than 0.3 percent for three-engine airplanes, or 0.5 percent for four-engine airplanes with— - (i) The critical engine inoperative and its propeller in the position it rapidly and automatically assumes;